Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760000

RESUMO

Onion peels (OP) are rich in bioactive compounds with a plethora of benefits for human health, but this valuable material is often wasted and underutilized due to its inedibility. Likewise, grapevine pruning residues are commonly treated as agricultural waste, but biochar (BC) obtained from this material has favorable characteristics as an adsorbent. This study investigated the potential of BC in removal of targeted polyphenolic compounds from OP extracts. The OP extracts were obtained adhering to green chemistry principles using deionized water amplified by three methods: maceration (MAC), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The extraction efficiency on the polyphenolic profile and antioxidant capacity was investigated with different extraction temperatures and solid-to-liquid (s/l) ratios. For further analysis, UAE at 90 °C with an s/l ratio of 1:100 was used due to higher polyphenolic compound yield. The BC adsorption capacity of individual polyphenols was fitted with the Langmuir and Freundlich isotherm models. Quercetin-3,4'-diglucoside obtained the highest R2 coefficient in both models, and the highest qmax value. The optimum conditions in the dosage experiment suggested an amount of 0.5 g of BC using 3 g/L extracts. The studied BC showed a high affinity for targeted phytochemicals from OP extracts, indicating its potential to be applied for the green adsorption of valuable polyphenolic compounds.

2.
Plants (Basel) ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765378

RESUMO

The impacts of global climate change and a rapid increase in population have emerged as major concerns threatening global food security. Environmental abiotic stress, such as drought, severely impairs plants' morphology, physiology, growth, and yield more than many other environmental factors. Plants use a complex set of physiological, biochemical, and molecular mechanisms to combat the negative effects caused by drought-induced stress. The aim of this study was to investigate morphological, spectral, physiological, and biochemical changes occurring in 30 garlic accessions exposed to short-term drought stress in a greenhouse setting and to identify potential early drought-induced stress markers. The results showed that, on average, garlic plants exposed to drought conditions exhibited a decrease in assimilation, transpiration, and stomatal conductance of 39%, 52%, and 50%, respectively, and an average increase in dry matter and proline content of 10.13% and 14.29%, respectively. Nevertheless, a significant interaction between the treatment and accessions was observed in the investigated photosynthetic and biochemical parameters. The plants' early response to drought ranged from mild to strong depending on garlic accession. Multivariate analysis showed that accessions with a mild early drought response were characterized by higher values of assimilation, transpiration, and stomatal conductance compared to plants with moderate or strong early drought response. Additionally, accessions with strong early drought response were characterized by higher proline content, lipid peroxidation, and antioxidant capacity as measured by FRAP compared to accessions with mild-to-moderate early drought response.

3.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627591

RESUMO

The Mediterranean area is especially rich in old, both sweet and pungent, varieties of onion. The synthesis of phytochemicals takes place concurrently with the overall development and maturation of vegetables; however, it is unclear whether there is a correlation between onion bulb size and antioxidant compound content, antioxidant capacity, and nutritional parameters and what the origin of these variations is. The aim of this work was to investigate the biochemical and nutritional aspects of the sweet onion landrace "Premanturska kapula", as well as to investigate the influence of onion bulb size on onion phytochemical and nutritional profile. The sweet onion landrace "Premanturska kapula" has a high soluble sugar content, a high antioxidant capacity, and a high phenolic compound content. Quercetin-3,4'-diglucoside and quercetin-4'-glucoside were the major flavonols, while protocatehuic acid was the major phenolic acid detected. The choice of onion bulb size can impact the profile of the sugars present, with large bulb sizes favoring higher sucrose and fructooligosaccharides content compared to small bulb sizes which were more abundant in glucose. The total sugars or bulb dry matter were not affected by bulb size. Phenolic compounds were more abundant in smaller bulb sizes, thus indicating a link between bulb development and phenolic compound allocation within the plant. This link possibly derived from agronomic practices such as bare-root transplants, or even open pollination which causes a broader genetic variability. From a consumer perspective, it can be a choice between the small and medium bulb sizes on one hand, which are more abundant in polyphenolics and simple sugars, or on the other hand, the larger bulbs which are more abundant in fructooligosaccharides known to carry excellent health benefits.

4.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445031

RESUMO

Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential. Standards of caffeic acid (CA), gallic acid (GA), and oleuropein (OLP) were used as polyphenolic representatives. The obtained data were fitted with the Langmuir and Freundlich isotherms models to describe the adsorption process. The best KL (0.39) and R2 (0.9934) were found for OLP using the Langmuir model. Furthermore, the adsorption dynamics and recovery potential of BC were investigated using an adapted BC column and performed on an HPLC instrument. The adsorption dynamics of biochar resulted in the adsorption of 5.73 mg CA g-1 of BC, 3.90 mg GA g-1 of BC, and 3.17 mg OLP g-1 of BC in a 24 h contact. The online solid phase extraction of the compounds performed on an HPLC instrument yielded a recovery of 41.5 ± 1.71% for CA, 61.8 ± 1.16% for GA, and 91.4 ± 2.10% for OLP. The investigated biochar has shown a higher affinity for low-polar compound adsorption and, consequently, a higher polar compound recovery suggesting its potential as an efficient polyphenolic compound adsorbent.

5.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297354

RESUMO

Allium ursinum L. is a wild relative of garlic, and it is abundant in many antioxidant compounds. Sulfur compounds, primarily cysteine sulfoxides (CSOs), are converted through several reactions into various volatile molecules, which are considered the principal flavor compounds of Alliums. In addition to secondary metabolites, wild garlic is abundant in primary compounds, such as amino acids, which serve not only as building blocks for the health-promoting sulfur compounds but also as antioxidants. The aim of this study was to investigate the link between individual amino acid contents, the total phenolic content, and the profile of volatile compounds as well as their influence on the antioxidant capacity of both the leaves and bulbs of wild garlic populations in Croatia. Both univariate and multivariate methods were used to study the differences in the phytochemical compositions among the wild garlic plant organs and the link between individual compounds and antioxidant capacity. Both the plant organ and location, as well as their interaction, have a significant impact on the content of total phenolic content, amino acids, volatile organic compounds, and the antioxidant capacity of wild garlic.

6.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275621

RESUMO

Given today's increasingly intensive agriculture, one key problem area considers the valorization and reuse of wastes from food and agricultural production with minimal impact on the environment. Due to its physicochemical characteristics, biochar (BC) derived from grapevine pruning residue has shown considerable potential for use as an adsorbent. High-value phytochemicals found in abundance in the olive leaf (OL) can be employed in many different industrial sectors. The potential application of BC in the removal of specific polyphenolic components from OL extracts has been investigated in the present study. Water, as the most available and greenest of solvents, was investigated as to its use in the extraction of polyphenols, which was carried out by comparing maceration, ultrasound-assisted extraction, and microwave-assisted extraction, considering different temperatures and solid-to-liquid (s/l) ratios. The BC adsorption capacity of selected polyphenols was fitted with both the Langmuir and Freundlich isotherm models. The Freundlich model fitted better relative to OL polyphenols adsorption. Oleuropein was the most abundant compound identified in the extracts, obtaining the highest Kf value (20.4 (mg/g) × (L/g)n) and R2 coefficient (0.9715) in the adsorption on the biochar's surface. The optimum conditions in the dosage experiment suggest the use of 0.5 g of BC using 3 g/L extracts, with an exception for oleuropein and hydroxytyrosol, for which the highest biochar dose (2.5 g) performed better. Considering the compounds' concentrations and the BC dose, BC from grapevine pruning residues demonstrated a potential use in the uptake of specific polyphenols from olive leaves, making it a promising adsorbent for such applications.

7.
Foods ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563941

RESUMO

Sauerkraut is produced by cabbage fermentation either spontaneously or by adding lactic acid bacteria. Although commercial cabbage cultivars are more desirable due to their higher yield and uniformity, traditional cultivars are highly prized for their unique sensory characteristics and suitability for fermentation. The aim of this study was to investigate the properties of sauerkrauts from traditional cabbage cultivars ('Brgujski' and 'Zminjski') compared to commercial samples, and to unravel the effects of ambient (18 °C) and cold storage (4 °C) on sauerkraut properties. Higher total phenolic contents and total antioxidant capacities measured by both FRAP and DPPH methods were observed for sauerkrauts from traditional cultivars. In total, 32 volatile compounds were identified, and differences in the volatile profile were observed among the investigated sauerkrauts. The sensory properties of traditional cabbage cultivars were on par, or even better, compared to those of commercially available sauerkraut products. The cold storage conditions characteristic of commercial environments preserved the total antioxidant capacity, the red to green color ratio (a), as well as the lightness (L) of sauerkraut compared to the ambient temperatures characteristic of domestic conditions, indicating the preservation of bioactive compounds responsible for the purple cabbage head coloration of the investigated traditional cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...